
KULONGESA – TES (Tecnologia – Educação – Sustentabilidade).   Publicação trimestral.     ISSN 2707-353X 

 
 

 
Escola Superior Politécnica da Lunda Sul, Saurimo, Angola                                                                                63 

Comportamento topológico dos espaços de Alexandroff 

Topological behavior of Alexandroff spaces 

Makambo Kapusa Bo Eustache 1* 

1 PhD. Escola Superior Politécnica de Lunda Sul. makambostch87@gmail.com 

 
*Autor para correspondência: makambostch87@gmail.com 

RESUMO 

O nosso estudo circunscreve-se a um exame profunda de algumas propriedades topológicas ou 

invariantes topológicas dos espaços de Alexandroff. Como ponto de partida, caracterizamos os 

espaços de Alexandroff pela sua base irredutível e em seguida, estudamos as propriedades P, tais que, 

se os espaços de Alexandroff X e Y são homeomorfos, então Y goza também da propriedade P. 

Tratamos então da conexidade, da conexidade local e por arcos, da compacidade, da normalidade, da 

regularidade, da regularidade completa, da propriedade de Baire e da propriedade de Lindelöff. 

Palabras clave: espaços de Alexandroff, propriedades topológicas, base irredutível, espaços finitos de 

Alexandroff. 

 

ABSTRACT 

We caracterize an Alexandroff space by its irreductible basis and then we examine specifically some 

topological properties, the topological invariants. We say that if an Alexandroff space X is 

homeomorphic to another Alexandroff space Y and if X has some property P, then Y gets too the same 

property P. We study for instance separation, connectness, local connectness, compactness, normality, 

regularity, complete regularity, Baire property and Lindelöff property. We show in particular that for 

Alexandroff spaces, regularity and complete regularity are equivalent; connectness and path-

connectness either. 

Keywords: Alexandroff spaces, topological properties, irreductible basis, Finite Alexandroff spaces. 
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INTRODUÇÃO 

Os espaços de Alexandroff foram introduzidos em 1937 por Pavel Sergeevitch Alexandroff no seu 

artigo intitulado “Diskrete räume” (Arenas, F.,1999), (Cauty, R., Dobrowolski, T. and Marciszewski, 

W., 1993) e (Eustache, M., 2013) onde ele trata, pela primeira vez, dos espaços discretos hoje 

conhecidos por “espaços de Alexandroff”. Estes espaços são hoje em dia muito utilizados em 

Informática. 

Segundo F. Arenas (1999) e M. Eustache (2013), P.S. Alexandroff contribuiu notavelmente no 

desenvolvimento da Teoria dos conjuntos, da Topologia e a ele devemos a noção de espaços 

compactos. 

Por espaço de Alexandroff X entende-se todo espaço topológico (X, τ) em que toda intersecção 

arbitrária duma família (finita ou infinita) de abertos é ainda um aberto (Arenas, F.G.,1999) e 

(Eustache, M., 2013). Neste caso a topologia τ é dita “topologia de Alexandroff” e ao espaço X 

denominamos também por “A-espaço” ou simplesmente “Alexandroff”. 

Os espaços discretos e os espaços topológicos finitos são, portanto, todos espaços de Alexandroff 

(Stong R., 1966). Além do mais, todo o Alexandroff é um P-espaço, isto é, um espaço no qual todo o 

subconjunto Gδ é um aberto. (Arenas, F.,1999) e (Stong R., 1966) 

No que se segue, fez-se apenas uma abordagem que abrange uma primeira parte sobre o 

comportamento topológico nos espaços de Alexandroff, onde uma segunda parte tratará da 

conexidade, normalidade, compacidade, regularidade e outras invariantes topológicas.  

Seja X um espaço de Alexandroff e seja pX. Assumimos, conforme se mostra em [5], [1] e [20], que 

num Alexandroff X, = VX: V aberto de X e pX e = SX: S fechado de X e pX.  

é o menor aberto de X contendo p e  é o menor fechado de X contendo p. Estes dois conjuntos têm 

um papel capital nos espaços de Alexandroff, em particular na continuação dos nossos trabalhos. 

Temos o seguinte resultado. 

Da entrada do jogo, mostramos que o segredo dos espaços de Alexandroff reside na base irreductível 

que desempenha o papel de DNA no corpo humano. (Stong R., 1966), (Ntantu, I., 2010) e (Eustache, 

M., 2013). 

 

Teorema 1.1. 

Seja X um espaço topológico. Então X é um espaço de Alexandroff se e só se  : pX é uma base 

dos abertos de X. 

Prova: 

Suponhamos que X seja um espaço de Alexandroff e sejam V um aberto de X e pV. Por hipótese,  

é um aberto de X e ele é o menor aberto de X contendo p. De onde, p  V. O que mostra que a 

família  : pX é uma base dos abertos de X. 

Reciprocamente, suponhamos que a família  : pX seja uma base dos abertos de X. E seja  : 

  uma família qualquer de abertos de X. Assumimos que V =  :   e mostramos que V é 

um aberto de X. 

1º Caso: V = , não há nada a mostrar. 

2º Caso: V ≠ . Seja pV, então p , . Daí p  ,  e assim p  V. O que 

mostra que V é vizinhança de p. Como p é qualquer em V, então V é vizinhança de cada um dos seus 

pontos. Isto é, V é um aberto de X. Portanto X é um Alexandroff. 

Seja X um espaço de Alexandroff. A base B= : pX no sentido do teorema acima denomina-se 

“base irreductivel” de X e caracteriza os espaços de Alexandroff ([05] e [06]). De facto, temos o 

seguinte resultado. 

Proposição 1.2. 

Toda a topologia de Alexandroff admite uma base irreductível. 

Prova: 
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Seja X um espaço de Alexandroff. A família B= : pX, onde 

é uma base irreductível de X. 

Se  é uma topologia de Alexandroff sobre um conjunto não vazio X. Se * = SX: (X\S), e se 

* forma uma topologia sobre X, * denomina-se nesse caso a “co-topologia” de  ([05], [06] e [20]).  

Teorema 2.3.3. 

Seja  uma topologia sobre X.  é uma topologia de Alexandroff se e só se  admita uma co-topologia 

sobre X. 

Prova 

Se  é uma topologia de Alexandroff sobre X e * = SX: (X\S) é o conjunto dos fechados de 

(X, ), tem-se obviamente que * e X* por definição de *. 

Se A, B*, então (X\A) e (X\B). Daí, (X\A) (X\B) = [X \ (A B)]. Portanto A B*. 

Do mesmo modo, se * , então (X\ ) . Como  é uma topologia de Alexandroff 

sobre X, segue-se que X\ :  = X \ ( ). O que mostra que  *. Assim 

* é uma topologia de Alexandroff sobre X.  

Reciprocamente, suponhamos que  admita uma co-topologia *. Mostramos que  é uma topologia de 

Alexandroff. 

Seja  I uma família de abertos de (X, ). Precisamos mostrar que  : I é um aberto em 

(X,) isto é seu complemento é fechado. Pelas leis de De Morgan, tem-se: X \ (  : ) = (X \ 

 * pois cada (X \ )*, * sendo uma topologia por hipótese. 

Daí X \ (  : ) é fechado em (X, ) e portanto  :  é aberto em (X, ). O que mostra que 

 é uma topologia de Alexandroff. 

Esta propriedade é apenas válida para espaços de Alexandroff. Assim, para = SX: S fechado de 

X e pX a família { é uma base dos abertos da co-topologia τ. 

 

DESENVOLVIMENTO 

O comportamento topológico dos espaços de Alexandroff 

Começamos o nosso trabalho definindo uma relação de ordem pela seguinte regra: “qp se e só se 

qBp” fazendo de X um T0-espaço. Portanto (X,) é um conjunto ordenado (poset). Reciprocamente, 

mostramos que se (X,) é um conjunto ordenado, então fazendo Bp = {qX: qp}, obtém-se uma base 

irredutível   = {Bp: pX} para uma T0-topologia de Alexandroff em X. Essa correlação entre espaço 

de Alexandroff e conjunto ordenado (poset) gera muitas aplicações em Informática teórica.  

Continuando a nossa análise dos espaços de Alexandroff, damos a caracterização de algumas 

propriedades topológicas tais como a conectividade, a conectividade por arcos, os axiomas de 

separação T1 e T2, a regularidade e a regularidade completa, a normalidade, a compacidade, a 

propriedade de Lindelöff e outras propriedades gerais dos espaços Alexandroff. Mostramos em 

particular, que a conexão é igual a conectividade por arcos, que a regularidade é igual à regularidade 

completa e que em geral um espaço de Alexandroff não é homogéneo. Todas estas ideias, serão 

utilizados proveitosamente num trabalho já em preparação. No entanto, a parte 1 não abrange todas 

estas propriedades; trataremos da normalidade, compacidade e outras propriedades como a invariância 

da cardinalidade e a propriedade de Lindeloff na parte 2. 

Lembre que um espaço topológico X é dito T0-espaço se e só se, para todos pontos x ≠ y em X, existe 

um aberto contendo um dos pontos e não o outro. Para um espaço T0-espaço de Alexandroff, temos o 

seguinte teorema. Todas as demonstrações que seguem podem ser consultadas em [05] e são originais. 

Teorema 2.1. Sejam p e q dois pontos distintos de um T0 – espaço de Alexandroff X. Então: 

1) pBq q Bp 

2) pFq q Fp . 
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3) pFq q Bp  

Prova 

(1) Suponhamos que pBq. Mostramos que qBp. Se qBp, como X é T0, existe um aberto U de X tal 

que pU e qU ou existe um aberto V de X tal que qV e pV. No primeiro caso, BpU e 

BqBpU. Portanto qU, o que é uma contradição. No segundo caso, tem-se BqV e pBqV, 

logo pV, o que também é uma contradição. Portanto se p Bq, então q Bp. 

(2) Se pFq, suponhamos por absurdo que qFp. Como X é T0, existe um aberto U tal que pU e 

qU ou existe um aberto V tal que qV e pV. No primeiro caso, qUqX\U fechado Fq
  

X\U   FqU = . Como pU, então pFq. Contradição com pFq. No segundo caso, 

pVpX\V fechado Fp
  X\VFpV = . Como qFp, então qV, contradição com qV. 

Assim, se pFq então qFp. 

(3) qBp q se e somente se pX\Bp. Como X\Bp é fechada e não contém p então pFq. Da mesma 

forma pFq  qBp  

Teorema 2.2. Seja X um espaço de Alexandroff. Então X é T0 – espaço se e somente se «  p, q 
X, Bq = Bp  q=p». 

Prova  

Suponhamos que X seja um T0–espaço. Se qp, então existe um aberto V de X tal que qV mas pV 

(ou pV mas qV ). De onde BqV (ou BpV). No primeiro caso pBq e no segundo caso q Bp. O 

que implica que Bq Bp. 

Reciprocamente, suponhamos que « p, qX, Bq= Bpq=p». Para ver que X é um T0-espaço, seja 

pq dois elementos distinctos de X. Então pela hipótese Bq Bp.  

Temos dois casos: 

Cas 1 :BpBq=. 

Nesse caso, Bp é uma é uma vizinhança de p tal que qBp e Bq é uma vizinhança de q tal que pBq. 

Cas 2 : BpBq. 

Tem-se as seguintes possibilidades: 

i) pBpBq e q BpBq : nesse caso, BpBq é uma vizinhança de p não contendo q. 

ii) pBpBq e q BpBq : nesse caso, BpBq é uma vizinhança de q não contendo p. 

iii) pBpBq e q BpBq : nesse caso, Bq é uma vizinhança de q não contendo p e Bp é uma 

vizinhança p que não contém q. 

iv) pBpBq e q BpBq : nesse caso, Bp BpBq Bq e Bq  BpBq Bp . De onde Bp  Bq Bp , o 

que obriga a igualdade Bp = Bq. O que contrediz a nossa hipotese. Este caso está portando excluido.  

Em conclusão, X é um T0-espaço.  

Teorema 2.3. Assumimos que X é um T0-espaço de Alexandroff. Então a relação definida por 

«q≤p qFp  p,q X» é uma relação de ordem sobre X. 

Prova 

- Reflexividade:  p≤ p pois p  Fp,  p X . 

- Transitividade: suponhamos que q≤ p e p≤r. Mostramos que q≤r . 

Tem-se: q ≤ p   qFp e p≤r   pFr. Mostramos que qFr.      qFp   Fq Fp e pFr 
  

FpFr . Daí qFq FpFr 
qFr isto é, q≤r. Logo a transitividade. 

- Antisimetria: Deve-se mostrar que p≤ q e q≤ pp=q. 
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De facto, tem-se q Fp e p Fq significa Fq Fp e Fp ⊂ Fq isto é, Fp = Fq. Se p q, pelo Teorema 

II.1.4.3 acima, como pFq, deve haver-se que qFp, o que contradiz Fp = Fq. Logo p=q. Portanto a 

antissimétrica e assim, (X, ≤) é um conjunto ordenado.  

Observações 

1) A relação de ordem dada no teorema acima pode também ser definida por "q ≤ p p " . (Stong 

R., 1966), (Ntantu, I., 2010) e (Eustache, M., 2013) 

2) Para a relação ≤, o espaço considerado deve necessariamente ser um T0-espaço. De facto, seja por 

exemplo, X = {1, 2, 3, 4} e τ = {, {1,2}, {3,4}, X} e assumimos que X não é um T0-espaço. Temos: 

B1= B2= {1,2}   1 ≤2 e 2≤1 mas 2 1. 

Em [07], é possível ver umas demonstrações semelhantes, mas numa abordagem um pouco diferente. 

Teorema 2.3. Assuma que X um espaço de Alexandroff e (p, q)X. Então: 

1. p Fq 
 qBp 

2. Fp Fq  Bq  Bp  

Prova 

(1) Suponha pFq. Se qBp então qX\Bp fechado Fq  X\Bp. Mas pFq. Logo pBp ; o que é 

uma contradição. Portanto qBp. 

Reciprocamente suponha qBp. Se pFq então pX\Fq aberto Bp  X\Fq. Mas qBp. Logo qFq, 

que ainda é uma contradição. Logo pFq. Tem-se assim: pFq 
 qBp.  

(2) Suponha que FpFq e mostramos que BqBp. Mas BqBp⇔ qBp. Suponhamos por absurdo que 

qBp. Então qX\Bp e X\Bp é fechado; de onde tem-se FqX\Bp Mas por hipotese FpFq, logo 

pFpFqX\Bp o que é inaceitável pois pBp. Por conseguinte qBp, isto é, Bq   Bp.  

Reciprocamente, suponhamos que BqBp e mostramos que FpFq. Suponhamos o contrário, isto é, p 

Fq. Então pX\Fq que é aberto. Logo Bp  X\Fq. Por hipotese tem-se BqBp. De onde qBqX\Fq  

que mostra que qFq, isto é, o que é absurdo. Portanto FpFq  

Teorema 2.4. Seja (X, ≤) um conjunto ordenado não-vazia. Por tudo pX, definimos Bp 

={qX :p q}. Então, = {Bp :pX} é uma base para uma T0-topologia de Alexandroff em X. 

Prova 

Se x Bp e xBq, então p x e q x. De onde xBx BpBq. O que mostra que ={Bp :pX} é uma 

base para uma topologia em X. Para ver que essa topologia é uma topologia de Alexandroff, 

assumimos que {Bi :iI} seja uma família qualquer de abertos. Mostramos que a sua intersecção é 

ainda um aberto. Definimos B= { Bi :i I}. Se pB, então pBpBi para todo i I e Bp Bi=B. 

De onde B( {Bp:pB})( {Bi :iI})=B. Por conseguinte B= {Bp:pB}, e assim B é aberto. 

Portanto essa topologia é de Alexandroff. Resta-nos mostrar que ela é T0. Para tal, suponamos que Bp 

= Bq, então q p e p q. Como  é uma relação de ordem, ela é antisimétrica. Em seguida as 

desigualdades q p e p q impliquem a igualdade p=q. Portanto X é um T0-espaço.  

Conectividade nos espaços de Alexandroff  

Nessa secção, vamos mostrar que todo espaço de Alexandroff é localmente conexo e que ele é conexo 

se e somente se ele é conexo por arcos. (Arenas, F.,1999), (Stong R., 1966), (Schmets, J., 1976) e 

(Eustache, M., 2019) 

II.2.1.1. Teorema 

Todo espaço de Alexandroff X é localmente conexo. 
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Prova 

Basta mostrar que cada  é conexo para todo pX. Assumimos portanto que pX e suponhamos por 

absurdo que Bp não é conexo. Seja V e W dois abertos não vazios e disjuntos de Bp tal que Bp = V W. 

Então há dois abertos V 'e W' em X tais que V V’ Bp e W=W’ Bp. Logo Bp=(V’Bp)(W’Bp)= 

Bp(V’W’). Como pBp, então p(V’W’). Se pV’, tem-se Bp⊂V’. Logo Bp⊂V⊂ Bp  

Bp=VW=. Contradição. Do mesmo modo, se pW ', mostramos que Bp = W; de onde vem V =. 

Contradição. Em conseguinte, Bp deve ser conexo; portanto X é localmente conexo.  

II.2.1.2. Teorema 

Seja X um espaço de Alexandroff e pX. Então  é conexo e conexo por arcos. 

Prova 

Já mostramos no teorema II.2.1.1 acima que a  é conexo.  

Para a conectividade por arcos de , seja q . Mostramos que há um caminho  unindo p a q. 

Definimos : [0,1] → X por (t) = q se 0t1 e (1) = p. Se mostrarmos que  é contínua, então  

será um caminho de origem (0) = q e de extremidade (1) = p. Seja V um aberto de X. Mostramos 

que -1(V)  é aberto em I = [0,1]. 

Distinguimos três casos: 

Caso 1: qV e pV. Nesse caso, vê-se que -1(V)= que é aberto em I = [0,1]. 

Caso 2: qV e pV. Nesse caso, -1(V) = [0,1), que é aberto em I = [0,1], pois [0,1) = [0,1] (- , 1). 

Caso 3: pV. Nesse caso, tem-se V. Como qBp por hipótese, então qBpVqV. Portanto 

pV e qV mostram que -1(V) =[0,1], que é aberto em [0,1]. 

Assim, temos de mostrar que -1(V) é aberto em [0,1] para cada V aberto de X. Logo  é contínua em 

[0,1]. 

Por conseguinte  é um caminho juntando q a p. Note que [0,1]Bp pois ([0,1)) = {q} e (1) = p.  

 

II.2.1.3. Teorema 

Seja X um espaço de Alexandroff. Então, X é conexo se e somente se X é conexo por arcos. 

Prova 

Se X é conexo por arcos, sabe-se já que ele é conexo por arcos. 

Reciprocamente, suponhamos X conexo. Mostramos que X deve ser conexo por arcos. Sabemos que 

por hipótese X é conexo por arcos. Como cada  é conexo por arcos pelo teorema II.2.1.2, então X é 

localmente conexo por arcos. 

Agora, um espaço conexo que é conexo por arcos deve ser conexo por arcos. Portanto X é conexo por 

arcos.  

Definições 2.7. :Sejam X um espaço de Alexandroff e, p e q dois pontos de X. Chamamos caminho de 

origem p e de extremidade q, todo subconjunto finito  ={p=p0,p1,…,pn=q} de X, onde  são pontos 

de X que satisfazem a relação: pi  ou pi+1  para todo i = 0,1,2,…,n-1. 

Um espaço de Alexandroff X é conexo por arcos se e somente se para cada par ordenado de pontos (p, 

q) em X, há um caminho unindo os dois pontos. 
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Um subconjunto S de um espaço de Alexandroff X é conexo por arcos se ele é conexo por arcos 

assumido como subespaço topológico. 

Exemplo 

(1) Seja X = {1,2,3,4} munido da topologia ={,{1},{3},{1,3}, {3,4},{1,2,3},{1,3,4}, X}. Como B1 = 

{1},B2 = {1,2,3}, B3 = {3} e B4={3,4}, assumindo que p=1 e q=3,p0 =1, p1=2 et p2=3, vê-se bem que 

Spq=={1,2,3} é um caminho de origem 1 e de extremidade 3. 

(2) Seja X um espaço de Alexandroff e pX. Como visto acima, cada  é um subconjunto conexo 

por arcos. 

II.2.1.4. Teorema 

Seja X um espaço de Alexandroff. Então, X é conexo se e somente se X é conexo por arcos no sentido 

da definição 2.7. 

Prova 

Suponha-se que X não é conexo. Por definição, há dois conjuntos abertos disjuntos e não vazios V e 

W tais que X = V W. Sejam pV e qW. Se = {p=p0,p1,…,pn=q} é um caminho de p para q, 

então haveria um  e um  tais que V e  W. Agora, se   , então como  

W, teríamos  W e assim, VW. O que é inaceitável pois V e W são disjuntos. Do 

mesmo modo, se   , teríamos  VW; o que é impossível pela mesma razão. Por 

conseguinte, não existe nenhum caminho de p para q. Portanto, X não é conexo por arcos. 

Reciprocamente, suponhamos X conexo. Queremos mostrar que X é conexo por arcos. Se X não fosse 

conexo por arcos, então para pX, assumindo Ap= {q X : existe um caminho de p para q}, teria-se 

Ap= { Bq : existe um caminho de p para q}. Daí Ap é um aberto em X. Como pAp, ele é não vazio. 

Se qX\Ap, então Bq é um aberto contendo q e disjunto de Ap pois se o for q pertenceria a Ap. O que 

implica que X\Ap é aberto, contradizendo então a conexidade de X. Em conclusão, X deve ser conexo 

por arcos.  

II.2.1.7. Corolário 

Um subconjunto S de um espaço de Alexandroff é conexo se e somente se ele é conexo por arcos. 

II.2.2. Axiomas T1 e T2 

II.2.2.1. Definições 

Um espaço topológico X é um T1-espaço se e somente se cada singleton em X é um fechado de X. X é 

um T2-espaço ou um espaço separado ou um espaço de Hausdorff se e somente se para todo par 

ordenado (x, y) de pontos dis de X, existem dois abertos disjuntos V e W tais que xV e yW. 

Claramente, todo T2-espaço é um T1-espaço. Mas a reciproca não é, em geral, verdadeira. Para os 

espaços de Alexandroff, temos o seguinte teorema. (Arenas, F., 1999), (Eustache, M., 2013), (Ntantu , 

I., 2010) e (Stong, R., 1966)  

II.2.2.2. Teorema 

Seja X um espaço Alexandroff. Então as seguintes afirmações são equivalentes:  

(1)  X é um T2-espaço 

(2)  X é um T1- espaço 

(3)  X é um espaço discreto. 
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Prova 

Basta mostrar que o espaço -Alexandroff é discreto. Para tal, estabelece-se a igualdade {p} = , 

pX. Consideramos um pX e seja x . 

Se x ≠ p, existem dois abertos V e W em X tais que xV, Wp, xW e pV (pois X é T1). Agora 

W  xW (pois xBp). Contradição com o fato de que xW. Com essa contradição, devemos 

ter x = p e assim  = {p}. Assim, cada singleton {p} é um aberto, que é dizer que X é um espaço 

discreto 

 

CONCLUSÕES 

Nesta primeira fase do estudo do comportamento topológico dos espaços de Alexandroff, 

demonstramos alguns resultados sobre espaços de Alexandroff começando pela base irredutível 

passando pelos axiomas de separação, a conexidade e a conexidade por arcos, deixando a normalidade, 

compacidade e regularidade e como regularidade completa para a parte 2 desta investigação. O nosso 

estudo vai nos levar a mostrar quanto os espaços de Alexandroff de tipo finito se aplica na 

modelização em redes informáticas. 
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