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RESUMO 

          Os Espaços de Alexandroff constituem espaços topológicos que se encontram no limiar das 

matemáticas puras e as matemáticas aplicadas à informática teórica (Ciências de computação). Por 

espaço de Alexandroff, entendemos todo espaço topológico no qual a intersecção de uma família de 

abertos é um aberto. Em outras palavras, toda união de uma família arbitrária de fechados é um 

fechado. O que os transformam em uma ferramenta de grande valia na informatização do contínuo. No 

presente artigo, o objetivo é aprofundar as propriedades topológicos dos espaços de Alexandroff.  A 

pesquisa foi basada nos métodos científicos de revisão bibliográfica, análise e síntese, a 

sistematização, dedução e a indução. Devendo provar muitos resultados sobre invariantes topológicos, 

a demonstração tanto por absurdo, contraposição e recorrência foi utilizada. O que nos levou a 

acrescentarmos novas propriedades tais que a conexidade, a conexidade por arcos, a compacidade, a 

propriedade de Lindelöff e a regularidade completa. Mostramos em particular que um espaço de 

Alexandroff é conexo se e somente se ele é conexo por arcos; que ele é regular se e somente se ele é 

completamente regular. 

 

Palavras-chave: Espaços de Alexandroff; propriedades topológicas; Invariantes topológicos; Base 

irredutível. 

ABSTRACT 

         Alexandroff’s spaces are topological spaces which are on the frontier of pure mathematics and 

applied mathematics to theoretical computer science. By a «n Alexandroff«s space we stand any space 

where the intersection of any familly of p+en sets is an open set. It means that any união of closed sets 

are a closet set. That situation let them be an important net work to digitalize the continuum.. In this 

paper, our focus is to deep the topological properties of Alexandroff’s spaces. As it is a bibliographical 

in which analysis, synthesis, systematization, deduction and induction, As we must prouve many 

results on topological properties, specially the invariants one, using demonstrations like by absurdity, 

contradiction or contraposition and recurrence, let us to look for and add new properties in 

Alexandroff’s spaces as connexity, path connexity, compacticity, the Lindelöff’s property and the 

complet regularity. We show, in particular, that an Alexandroff’s space is connexe if and only if it is 

path connexe; that it is regular if and only if it is completely regular. 

Key-words: Alexandroff’s spaces; topological properties; Topological Invariants; Irreductible basis. 
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INTRODUÇÃO 

        Em vários trabalhos ligados aos tratamentos de imagem tais como a análise de imagens médicas 

ou biológicas como também em análise de imagens de materiais e a segmentação de vídeos, muitas 

noções topológicas constituem um suporte fundamental na discretização dos objetos contínuos em 

objetos discretos; o que torna possível a sua informatização. No início, a topologia digital foi 

concebida para as imagens binárias. Ela utiliza dois grafos definindo as vizinhanças de cada ponto do 

objeto e do fundo, e o quadro matemático que descreve melhor esta interconexão é o espaço de 

Alexandroff. Por espaço de Alexandroff, entende-se todo espaço topológico no qual a intersecção de 

uma família arbitrária de abertos é um aberto.  

       O que equivale a dizer que toda união de uma família de fechados é um fechado. Os espaços de 

Alexandroff constituem uma classe importante de espaços topológicos que se encontram na 

intersecção das matemáticas puras e as matemáticas aplicadas à informática (ciência de computação) 

teórica. Como o destaca F.G.Arenas (1999), é talvez interessante observar o que acontece quando se 

entorta uma definição padrão. É o que tinha feito o matemático russo Pavel Sergueevitch Alexandroff 

num artigo publicado em 1937, quando mudou um pouco um dos axiomas na definição do espaço 

topológico. Tirou-se um novo tipo de espaços topológicos aos quais se atribuiu a denominação de 

Diskrete raüme; hoje conhecido como “Espaços de Alexandroff”. Só nos anos de 1980 e 1990 que 

esses espaços se tornaram em ferramenta importante na informatização dos objetivos contínuos; daí o 

interesse para os matemáticos e os informáticos. Desde os trabalhos de Alexandroff sobre esses 

espaços, muitos matemáticos e informáticos se debruçaram sobre as ricas propriedades dos espaços de 

Alexandroff. Para dar-se conta disso, basta consultar os trabalhos tais como os de (Shirazi & Getan, 

2011); (Ntantu, 2010); (Arenas, 1999); (Alsa Elatras, 2000); (Saint Raymond, 1971); (Grawert, 1998); 

(Barmack, 2010); (Makambo, 2011; 2013); (Castro, 2010); etc. 

      No presente artigo, o foco se centra em aprofundar as propriedades topológicos dos espaços de 

Alexandroff.. Portanto, perscrutamos os invariantes topológicos, dando a caracterização de algumas 

propriedades topológicas tais como a conectividade, a conectividade por arcos, os axiomas de 

separação T1 e T2, a regularidade e a regularidade completa, a normalidade, a compacidade, a 

propriedade de Lindelöff e outras propriedades gerais dos espaços Alexandroff. Se mostra em 

particular, que a conexão é igual a conectividade por arcos, que a regularidade é igual à regularidade 

completa e que em geral um espaço de Alexandroff não é homogéneo (Makambo, 2013). Todas estas 

ideias, são utilizados com aproveitamento para o efeito usando os métodos da demonstração tal como 

a contraposição, a recorrência, pelo absurdo. 

       Como já foi referido acima, num espaço de Alexandroff, todo espaço topológico no qual a 

intersecção arbitrária dos abertos é ainda um aberto. O que equivale a dizer que todo ponto possui uma 

base de vizinhança mínima. Alem dos trabalhos acima citados sobre os espaços de Alexandroff, 

matemáticos como Eckhardt e Latecki (2003; 2008), Gruenhage (1976), Herman (1990), Khalimsky 

(1987), Kovalevsky (1989), Kronheimer (1992), Malandain (2006), Ntantu, Makambo & Kuyunsa 

(2011), estes inclinaram-se na exploração da imensa riqueza das suas propriedades tal como também 

nas suas aplicações nas ciências de computação.  

        Em Makambo (2013), o comportamento topológico dos espaços de Alexandroff foi destacado, 

em imitação à definição da topologia da convergência compacta, levando à topologia da base 

irredutível sobre o espaço de funções contínuas sobre o espaço de Alexandroff. foi respondida a 

questão sobre a pertinência do estudo  

        E no presente artigo, iniciou-se por mostrar que todo espaço de Alexandroff é localmente conexo 

e que em espaços de Alexandroff há equivalência entre conexidade e conexidade por arcos. Mostra-se 

alguns outros resultados da separabilidade, isto é, para um espaço de Alexandroff um T1-espaço é um 

T2-espaço como também, é discreto. Num espaço de Alexandroff regular, todo fechado é aberto e um 

tal espaço, sendo regular, é completamente regular. Portanto, é discreto. E isso proporciona um olhar 

na parte aplicacional dos espaços de Alexandroff de tipo finito, pois um espaço de Alexandroff de tipo 

finito modeliza uma rede informática e reciprocamente, uma rede informática pode ser realizada para 

uma topologia de Alexandroff. O que justifica que a posição dos espaços de Alexandroff que 

constituem uma classe importante dos espaços topológicos que se encontram no limiar das 
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matemáticas puras e das matemáticas aplicadas à informática teórica. No que segue, o nosso foco se 

encontra nas propriedades topológicas desses espaços de Alexandroff.   

RESULTADOS E DISCUSSÃO 

       Para estarmos conforme às nossas pretensões, apresentamos os resultados, definindo para o efeito 

certos conceitos importantes relacionados a cada resultado, conferindo-nos em Barmak (2010), Castro 

(2010) e, especialmente, em Makambo (2013) para todos os resultados aqui tratados. 

1. Conexidade nos espaços de Alexandroff 

      Nesta secção, mostramos que todo espaço de Alexandroff é localmente conexo e associamos a 

conexidade com a conexidade por arcos. 

Teorema 1.1. Todo espaço de Alexandroff X é localmente conexo. 

Prova 

        Basta mostrar que cada Bp é conexo para todo pX. se assume, portanto, que pX e suponhamos 

por absurdo que Bp não é conexo. Seja V e W dois abertos não vazios e disjuntos de Bp tal que Bp = 

VW. Então há dois abertos V' e W' em X tais que V=V’Bp e W=W’Bp. Logo 

Bp=(V’Bp)(W’Bp)= Bp(V’W’). Como pBp, então p(V’W’). Se pV’, tem-se Bp⊂V’. 

Logo Bp⊂V⊂ Bp  Bp=VW=. Contradição.  

Do mesmo modo, se pW', mostramos que Bp = W; portanto V =. Contradição. Por conseguinte, Bp 

deve ser conexo; isto é, X é localmente conexo. 

Teorema 1.2. Seja X um espaço de Alexandroff e pX. Então Bp é conexo e conexo por arcos. 

Prova 

       Já se mostrou no teorema 1. que Bp é conexo. Para a conexidade por arcos de Bp, seja qBp. 

Mostramos que existe um caminho  unindo p a q. Definimos : [0,1] → X por (t) = q se 0t1 e 

(1) = p. Se mostrarmos que  é contínua, então  será um caminho de origem (0) = q e de 

extremidade (1) = p. Seja V um aberto de X. Mostramos que -1(V)  é aberto em I = [0,1]. 

Distinguimos três casos: 

Caso 1: qV e pV. Nesse caso, vê-se que -1(V)= que é aberto em I = [0,1]. 

Caso 2: qV e pV. Nesse caso, -1(V) = [0,1), que é aberto em I = [0,1], pois [0,1) = [0,1](-, 1). 

Caso 3: pV. Nesse caso, tem-se Bp V. Como qBp por hipótese, então qBpVqV. Portanto 

pV e qV mostram que -1(V) = [0,1], que é aberto em [0,1]. 

Assim, acabamos de mostrar que -1(V) é aberto em [0,1] para cada V aberto de X. Logo  é contínua 

em [0,1]. 

Por conseguinte,  é um caminho juntando q a p. Note que [0,1]Bp pois ([0,1)) = {q} e (1) = p. 

                

Teorema 1.3. Seja X um espaço de Alexandroff. Então, X é conexo se e somente se X é conexo por 

arcos. 

Prova 

Se X é conexo por arcos, sabe-se já que ele é conexo por arcos. 

Reciprocamente, suponhamos X conexo. Mostramos que X deve ser conexo por arcos. Sabemos que 

por hipótese X é conexo por arcos. Como cada Bp é conexo por arcos pelo teorema 1.2, então X é 

localmente conexo por arcos. 

 Agora, um espaço que é localmente conexo por arcos deve ser conexo por arcos. Portanto X é conexo 

por arcos.  

Para o que segue, definiram (Makambo, 2013; Caastro, 2010; Barmack, 2010) 
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Sejam X um espaço de Alexandroff e, p e q dois pontos de X.  

1) Chamamos caminho de origem p e de extremidade q, todo subconjunto finito Spq ={p=p0,p1,…,pn=q} 

de X, onde os pi são pontos de X que satisfazem a relação: pi𝐵𝑝𝑖+1 ou pi+1𝐵𝑝𝑖  para todo 

i=0,1,2,…,n-1. 

2) Um espaço de Alexandroff X é conexo por arcos se e somente se para cada par ordenado de pontos 

(p, q) em X, há um caminho unindo os dois pontos. 

3) Um subconjunto S de um espaço de Alexandroff X é conexo por arcos se ele é conexo por arcos 

assumido como subespaço topológico. 

Com isso, segue o seguinte resultado 

Teorema 1.6. Seja X um espaço de Alexandroff. Então, X é conexo se e somente se X é conexo por 

arcos no sentido da definição 1.4. 

Prova 

       Suponha-se que X não é conexo. Por definição, há dois conjuntos abertos disjuntos e não vazios V 

e W tais que X = VW. Sejam pV e qW. Se Spq = {p=p0,p1,…,pn=q} é um caminho de p a q, então 

existiria um pi e um pi+1 tais que  piV e pi+1W.  

      Agora, se piBp, então como pi+1W, teríamos 𝐵𝑝𝑖+1W e assim, piVW. O que é inaceitável, 

pois V e W são disjuntos. Do mesmo modo, se 𝑝𝑖+1 𝐵𝑝𝑖, teríamos 𝑝𝑖+1VW; o que é impossível 

pela mesma razão. Por conseguinte, não existe nenhum caminho de p para q. Portanto, X não é conexo 

por arcos. 

       Reciprocamente, suponhamos X conexo. Queremos mostrar que X é conexo por arcos. Se X não 

fosse conexo por arcos, então para pX, assumindo  

Ap= {q X : existe um caminho de p para q}, ter-se-ia Ap= { Bq : existe um caminho de p para q}. 

Daí Ap é um aberto em X. Como pAp, ele é não vazio. Se qX\Ap, então Bq é um aberto contendo q 

e disjunto de Ap pois se o for q pertenceria a Ap. O que implica que X\Ap é aberto, contradizendo então 

a conexidade de X. Em conclusão, X deve ser conexo por arcos. 

Corolário 1.7. Um subconjunto S de um espaço de Alexandroff é conexo se e somente se ele é conexo 

por arcos. 

2. Axiomas de separação 

     Conforme o propósito deste artigo, consideramos agora a separabilidade, tratando dos axiomas de 

separação T1 e T2. Definimos 

1) Um espaço topológico X é um T1-espaço se e somente se cada singleton em X é um fechado de X.  

2) Um espaço topológico X é um T2-espaço ou um espaço separado ou, ainda, um espaço de 

Hausdorff se e somente se para todo par ordenado (x, y) de pontos dis de X, existem dois abertos 

disjuntos V e W tais que xV e yW.  

3) Claramente, todo T2-espaço é um T1-espaço. Mas a recíproca não é, em geral, verdadeira. Para os 

espaços de Alexandroff, temos o seguinte teorema. 

Teorema 1.7. Seja X um espaço Alexandroff. Então as seguintes afirmações são equivalentes:  

(1)  X é um T2-espaço 

(2)  X é um T1- espaço 

(3)  X é um espaço discreto. 

Prova 

         Basta mostrar que o espaço T1-Alexandroff é discreto. Para tal, estabelece-se a igualdade {p} = 

Bp pX. Consideramos um pX e seja xBp. Se x ≠ p, existem dois abertos V e W em X tais que 

xV, Wp, xW e pV (pois X é T1). Agora BpW  xW (pois xBp). Contradição com o facto 
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de que xW. Com essa contradição, devemos ter x = p e assim Bp ={p}. Assim, cada singleton {p} é 

um aberto. Isto é, X é um espaço discreto.  

3. Regularidade e regularidade completo 

Segundo (Makambo, 2013; Barmak, 2010) 

1) Um espaço topológico é regular se e somente se para todo fechado A e para qualquer ponto p não 

pertencendo a A, existem dois abertos disjuntos U e V tais que AU e pV. 

2) Um espaço topológico X é completamente regular se e somente se para todo aberto V de X e tudo 

pV, existe uma função contínua f: X → ℝ tal que f (p) = 1, 0  f (x)  1 para todo x X e f (X \ V) = 

{0}. 

3) Num espaço Alexandroff regular se o fechado A não estiver aberto, então BA\A ≠ e, portanto, 

existe pBA\A com {p}BA= {p} e assim por BpBA≠, isto é, em qualquer espaço regular de 

Alexandroff, todo fechado é também aberto; como se demonstrou no seguinte resultado. 

Teorema 1.8. Seja X um espaço Alexandroff. Então X é regular, se e somente se todo fechado de X é 

um aberto de X. 

Prova 

    Se considera F, um fechado de X. Se F não estiver aberto, então F  BF =  {V X : V é aberto e F

V} que é o menor aberto contendo F. Seja p BF\F. Já se tem Bp   BF. Como p F, pela 

regularidade de X, existem dois disjuntos aberto U e W tal que pU e FW. Segue-se que a Bp U e 

BFW, e assim  Bp BF= . Contradição com Bp   BF. Por conseguinte, F = BF e assim F é aberto. 

Reciprocamente, suponhamos que todo fechado de X é aberto em X. Seja pF com pX F e F um 

fechado. Então p X\F e, como F é fechado, X\F é aberto de X. Além disso, por hipótese F é aberto.  

Portanto, F e X\F são abertos disjuntos separando F e p. Portanto X é regular. 

 

Observações Fundamentais 

1) Num espaço de Alexandroff regular, acabamos de ver que se um fechado F não é aberto, então BF\F 

≠  e, portanto, existe pBF\F com {p} BF = {p} e assim Bp  BF  . 

2) Seja X um espaço de Alexandroff regular e p≠q dois pontos de X. Devemos ter ou pBp  Bq ou p

Bp 
c

qB . Como X é regular, 𝐵𝑞
𝑐 é um aberto de X. Então Bp  Bq e Bp 

c

qB
 
são dois abertos de X 

contendo p e menores que Bp. O que contradiz a definição de Bp, a menos que se tenha Bp=Bq ou que 

Bp  Bq=  (quer dizer, Bp= Bp 
c

qB ). Assim, um espaço de Alexandroff regular é não conexo e os 

subconjuntos Bp formam uma partição de X pois X={ Bp :pX}, e como sub-espaço topológico, 

cada Bp possui a topologia grosseira. 

3) Em um espaço regular de X Alexandroff, se p e q são dois pontos, então tem-se ou Bp=Bq no qual 

caso p=q ou então Bp  Bq=  e pq nesse caso. 

Quando um espaço de Alexandroff é simultaneamente regular e T0, ele é discreto. 

Teorema 1.9. Todo T0-espaço de Alexandroff regular é um espaço discreto. 

Prova 

       Seja X um T0-espaço de Alexandroff regular e pX. Mostre que Bp = {p}. Suponhamos por 

absurdo que existe qBp tal que q≠p. Tem-se então, ou pBp  Bq, ou pBp 
c

qB
 
, onde 

c

qB  é o 

complemento de Bq  em X. 

Caso 1: p Bp  Bq 
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Tem-se: p Bp  Bq  Bp Bp  Bq Bq. Mas como qBp (por hipótese) Bq Bp   Bp  Bq 
Bq  Bp=Bq. Como X é T0 e que pq, existe um aberto V tal que pV e q V, ou existe um aberto W 

tal que qW e p W. Se pV e q V, então Bq = Bp V e q V. Contradição pois qBq. Do mesmo 

modo, se qW e p W, então Bp = Bq W e p W. Contradição pois pBp. Assim, com esta 

contradição, devemos ter Bp ={p}. 

Caso 2: pBp  
c

q
B  

Como X é regular, então pelo teorema 1.8 acima referido, 
c

q
B  é aberto. Logo Bp Bp 

c

q
B    

Bp   Bp= Bp 
c

q
B 

c

q
B  Bp  Bq=. Mas como qBp e qBq  qBp  Bq  , contradição. 

Nesse caso, Bp = {p}.  

Como {p}= Bp para todo pX, concluímos que X é discreto.  

O resultado que segue caracteriza os espaços de Alexandroff que são completamente regulares 

Teorema 1.10. As seguintes afirmações são equivalentes para todo espaço de Alexandroff X: 

1. X é regular; 

2. Todo fechado de X é aberto em X; 

3. Todo aberto de X é fechado em X; 

4. O aberto irredutível Bp é fechado para todo p em X; 

5. Bp = Fp   para todo pX; 

6. A topologia  de X é igual a sua cotopologia *; 

7. X é completamente regular; 

8. Para todo pX, a função característica Bp de Bp é contínua; 

9. Para todo U aberto não vazio de X, a função característica U é contínua; 

10. Para todo F fechado não vazio de X, a função característica F é contínua.  

Prova  

As equivalências (1) ⟺ (2) ⟺ (3) ⟺ (4) ⟺ (5) e (3) ⟺ (6) são fáceis de determinar. 

Para (7) ⟺ (1): Assuma-se em primeiro lugar que X é completamente regular e mostra-se que X é 

regular. Para tal, seja p um ponto de X. Como pBp e Bp é aberto em X, pela regularidade completa de 

X, existe uma função contínua f: X→ℝ tal que f(p)=1 e f(X\Bp)=0. Pela continuidade de f, f(Bp)= 

f(p)=1 e Bp=f-1(1) mostra que Bp é fechado em X. Isso sendo verdadeiro para todo pX, concluímos 

pela equivalência (4) ⟺ (1) que X é regular. Para a reciproca, suponhamos X regular. Seja pX. 

Vamos mostrar que a função característica de Bp é contínuo. Seja então f: X→ℝ esta função. Sabemos 

que f(Bp)=1 e f(X\Bp)=0. Se V é um aberto de ℝ, examinamos f-1(V) em X.  

Temos quatro casos:  

- Caso 1: 1V et 0V: nesse caso f-1(V)=X que é aberto de X 

- Caso 2: 1V e 0V : nesse caso f-1(V)=Bp que é aberto em X  

- Caso 3: 1V e 0V : nesse caso f-1(V)= X\Bp que é aberto em X pois todo fechado de X é 

aberto pela regularidade de X. 

- Caso 4:1V e 0V: nesse caso f-1(V)= que é aberto em X. 

Agora mostramos ue X é completamente regular. Para tal, seja U um aberto em X e pX. Como 

Bp  U, então X\U  X\Bp. Seja então f a função característica de Bp. Então f é contínua tal que 

f(p)=1 e f(X\U)f(X\Bp)=0. Em seguida f(p)=1 e  f(X\U)=0. De onde X é completamente regular. 

As equivalências (7)⟺(8)⟺(9)⟺(10) resultam das ideias na prova de (1)⟺(7).  

Observações 2. 

1). Num espaço de Alexandroff completamente regular X, sejam p e q dois pontos de X. Sabe-se pelo 

Teorema 1.10. (4) acima que Bp= Fp para todo pX. Além disso, pFq  qBp. Temos as seguintes 

equivalências: pBq  qBp⟺Bq =Bp. 
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2). Se p≠q num espaço de Alexandroff completamente regular, há gC(X) tal que g(p) = 1 e g(q) = 0. 

3). Todo T0-espaço de Alexandroff completamente regular é um espaço discreto. 

 

4. Normalidade 

Na obra (Makambo, 2013) 

Um espaço topológico X é normal se e somente se para todos fechados disjuntos A e B, existem 

abertos disjuntos U e V tais que A⊂U e B⊂V. Todo T1-espaço normal é regular. Mas a recíproca não é 

verdadeira.  

Para os espaços de Alexandroff, temos o seguinte resultado 

Teorema 1.11. Todo espaço de Alexandroff regular é normal. 

Prova 

Seja X um espaço de Alexandroff regular. Sejam A e B dois fechados disjuntos em X. Pelo teorema 

1.8, A e B são também abertos disjuntos separando A e B. Assim, X é um espaço normal.  

Se X é um espaço de Alexandroff normal, então os fechados disjuntos contendo P e P' devem ser 

disjuntos, quer dizer que   BP’ =. 

 

Teorema 1.12. Seja X um espaço de Alexandroff. Então X é normal se e somente se para todo 

fechado P de X, BP é um fechado em X. 

Prova 

       Suponha X normal. Seja P um fechado de X. Assumimos F = X\BP que é fechado em X, e PF = 

. Como P e F são fechados disjuntos de X, pela normalidade, existem dois abertos disjuntos tais que 

P⊂V e W⊂ F. Logo, BP ⊂V e BF ⊂W. Segue-se que BPBF=ϕ, o que implica que BF= X\BP=F. 

Assim, F é aberto   BP = X\(X\BP)= X\F é fechado.  

Reciprocamente, suponha que  seja fechado para todo P de X. Mostramos que X é normal. Sejam P 

e Q dois fechados disjuntos de X. Por definição, BP e BQ são abertos de X contendo P e Q, 

respectivamente. Vamos mostrar que esses dois abertos separam P e Q. De facto, PQ=, extrae-se a 

inclusão QX\P. Uma vez que X\P é um aberto contendo Q, ele deve também conter BQ. Daí, 

P∩BQ=, o que mostra que PX\BQ. Por hipótese BQ é um fechado de X, o que implica que o aberto 

X\BQ contendo P deve também conter BP. Assim, BP e BQ são disjuntos e separam P e Q.  

Corolário 1.13. Um espaço normal de Alexandroff X é regular se e somente se P = BP para todo 

fechado P de X. 

4.1. Exemplo de um espaço de Alexandroff normal, que não é regular (Makambo, 2013) 

Seja X={1,2,3,4} e ={,{3},{1,2},{3,4},{1,2,3},X}. Os fechados de (X,) 

são :,{4},{1,2},{3,4},{1,2,4}. Daí B=,B{4}={3,4}, B{1,2}={1,2}, B{3,4}={3,4}, B{1,2,4}=X. Assim para 

todo fechado P de X, tem-se BP é fechado em X. Portanto (X,) é normal. No entanto (X,) não é 

regular pois o fechado {4} não é aberto em (X,). 

5. Compacidade 

Definimos (Makambo, 2013) 

Um espaço topológico X é compacto se e somente se todo recobrimento aberto de X admite um sub-

recobrimento finito. 

Teorema 1.14. Seja X um espaço de Alexandroff. Então X é compacto se e somente se existe um 

conjunto finito P X tal que X = BP. 

Prova 
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Suponhamos X compacto. Como X = {Bp : p X}, existe nℕ tal que X = 
ip

n

i

B
1=

 = BP, onde P= { 

pi : i=1, 2, …, n}. 

Reciprocamente, suponhamos que existe nℕ tal que P= {p1, p2, …, pn} X e X = Bp =
ip

n

i

B
1=

 . Para 

mostrar que X é compacto, seja V = {Vϕ : ϕ   } um recobrimento aberto de X. 

Para todo 1≤ i ≤ n, existe ϕi  tal que piVϕi. Como Vϕi é aberto, então pi
ip

B   Vϕi. De onde X = 

Bp = 
ip

n

i

B
1=

  
n

i 1=

 Vϕi. Assim {Vϕi : i= 1, 2, …, n} é um sub-recobrimento finito de V. Portanto X é 

compacto. 

Admite-se o seguinte  

Corolário 1.15. Sejam X um espaço de Alexandroff e S um subconjunto de X. Então S é um 

compacto de X se e somente se existe um conjunto finito P S tal que S =S BP. Além disso, se S é 

aberto, então S = BP. 

Assim, cada BP é um compacto de X para toda parte finita P de X. Em particular, Bp é um subconjunto 

compacto de X para todo pX. 

6. Espaços de Alexandroff possuindo a propriedade de Lindelöf 

Definimos (Makambo, 2013) 

Um espaço topológico X verifique a propriedade de Lindelöff (ou é um espaço de Lindelöff) se e 

somente se todo recobrimento aberto de X admite um subconjunto enumerável. 

Teorema 1.16. Seja X um espaço de Alexandroff. Então X verifique a propriedade de Lindelöf se e 

somente se existe um conjunto enumerável PX tal que X = BP. 

Prova 

Suponha que X satisfaz a propriedade Lindelöff. Como X = {Bp : p X}, então a família {BP: pX} 

é um recobrimento aberto de X. Portanto existe um subconjunto enumerável P = {pn: n = 1, 2, ...} tal 

que X =
np

n

B


=1

 = BP. 

Reciprocamente, suponhamos que existe um conjunto enumerável P = {p1, p2, ... , pn, ...}  X tal que 

X = BP=
np

n

B


=1

 . Para mostrar que X satisfaz a propriedade Lindelöf, consideramos V ={Vϕ : ϕ  } 

um recobrimento aberto de X. Para todo n natural não nulo n, existe ϕn  tal que pnVϕn. Como Vϕn 

é aberto em X, então pn
np

B Vϕn. Daí X = Bp = 
np

n

B


=1

  


=1n

 Vϕn. Assim {Vϕn : n=1, 2, …} é um 

sub-recobrimento enumerável de V. Portanto X verifique a propriedade de Lindelöf.  

7. Outras propriedades topológicas dos espaços de Alexandroff (Castro, 2010; Makambo, 2013) 

Teorema 1.17 Seja X um espaço de Alexandroff. Então tem-se: 

(1) X verifique o primeiro axioma de enumerabilidade; isto é, cada ponto possui uma base 

enumerável de vizinhanças em ocorrência {Bp}  pX. 

(2) X verifique o segundo axioma de enumerabilidade; isto é, X possui uma base enumerável de 

abertos se e somente se X é enumerável. 

(3) X é separável se e somente se existe uma sequência (xn)n tal que X= { :nℕ} 

(4) Se X é finito, então ele é compacto. 

(5) X é quase-metrizável se e somente se cada Bp é finito e fechado em X para todo pX. 

O seguinte corolário derive do ponto (2) do teorema 1.17. 

Corolário 1.18. Seja X um espaço de Alexandroff.  
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1) Se B= {B p :pX}, então card(X)  card(B). Em particular, todo espaço de Alexandroff verificando 

a propriedade de Lindelöff é enumerável. 

2) Se X é quase-metrizável, então ele é completamente regular. 

9. Espaços de Alexandroff localmente finitos 

Novamente na obra (Makambo, 2013) 

1) Um espaço X de Alexandroff é localmente finito se cada ponto p de X possui uma vizinhança finita 

e um conjunto finito e fechado contendo o ponto p. 

2) Num espaço de Alexandroff X, se pX, assumimos que F p = {F X : F é fechado de X e  pF 

}. F p é o menor fechado de X contendo p. Além disso, B p =  {VX : V é um aberto de X e pV} 

é o menor aberto X contendo p. 

Assim, podemos dizer que  

3) um espaço de Alexandroff X é localmente finito se e somente se para todo pX, Bp e Fp são 

subconjuntos finitos de X. 

O que mostra que todo espaço de Alexandroff de cardinalidade finita é localmente finito. 

4) Um exemplo de espaço localmente finito: Consideramos o conjunto ℤ dos números inteiros com a 

topologia de Alexandroff definida pela base irredutível cujos elementos são: 

Bp = p-1, p, p+1 , se p é ímpar e Bp = {p}, se p é par. A topologia assim definida é chamada de 

topologia de Marcus-Wyse. Ela é localmente finita. 

Teorema 1.19. Seja X um espaço de Alexandroff localmente finito e não-discreto. Então, existem dois 

pontos distintos p e q em X tal que se W(p) e W(q) são vizinhanças de p e q, respetivamente, e se f: 

W(p)→W(q) é uma injecção com f(p) = q, então f não é contínua. 

Prova 

Como X não é discreto, ele não é T1. Logo existem dois pontos distintos p e q em X tais qBp e 

pBq. Daí Bq é estritamente contido em Bp. Assim, card(Bq)card(BP). Obviamente, BP é um aberto 

de W(p) e Bq é um aberto de W(q). 

Seja agora f: W(p)→W(q) uma injecção contínua. Como pf-1(Bq) obtém-se que Bp  f-1(Bq). Daí 

card(Bp)  card(f-1(Bq)) = card(Bq), o que contradiz o fato de que card(Bq)card(Bp). 

Observação 3 

Um espaço topológico é homogéneo quando dois pontos distintos possuem vizinhanças homeomorfas. 

Nosso teorema afirma que um espaço de Alexandroff não-trivial não é homogéneo. 

Teorema 1.20. Seja X um espaço Alexandroff localmente finito. Então, temos: 

1. Cada conjunto Fp contém pelo menos um vértice para todo pX. 

2. Se Fp ≠ Fq então existe um vértice no um que não se encontra no outro. 

Prova 

1. Se Fp = {p}, então p é um vértice. Se não existe q tal que q≠q. Nesse caso, pFp  Fq e 

card(Fq)card(Fp). Repetindo esse processo com Fq, chega-se eventualmente a um vértice contido em 

Fp. 

2. Se os dois conjuntos Fp e Fq são disjuntos, o resultado é obtido a partir de (1). Se não Fp ∩ Fq ≠, 

e podemos usar a construção em (1) para encontrar um vértice com a propriedade procurada. 

No resultado seguinte, vamos mostrar que o número de elementos de um espaço de Alexandroff finito 

é um invariante topológico. 

Teorema 1.21. Cardinalidade 
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Seja X um espaço de Alexandroff finito e Y um espaço de Alexandroff qualquer. Se f: X→Y é um 

homeomorfismo de X em Y, então X e Y têm o mesmo número de elementos. 

Prova 

Como a aplicação f é um homeomorfismo, ela é injectora. Resta-nos mostrar que f é sobrejectora. Para 

isso, seja qY. Precisamos encontrar pX tal que q = f(p). Como qBq, então Bq é um aberto não 

vazio de Y. Pelo homeomorfismo de f, f-1(Bq) é um aberto não vazio de X contendo f-1(q). Seja então 

pf-1(q)  f-1(Bq). Então pBpf-1(Bq) e pela continuidade de f, f(p)=qf(Bp)  f(f-1(Bq))  Bq. 

Assim, f é sobrejectora. Em seguida, card X = Card Y. Como X é de cardinalidade finita, então X e Y 

têm o mesmo número de elementos.  

CONCLUSÕES 

Este artigo foi centrado no estudo do comportamento topológico dos espaços de Alexandroff. 

Admitida a existência da base irredutível e da relação de ordem nesses espaços, aprofundamos o 

estudo, descobertas algumas das suas propriedades. Assim, foram demonstradas  

- A conexidade local, a conexidade por arco que, nos espaços de Alexandroff equivale a conexidade.  

- Para os espaços de Alexandroff, um espaço discreto é T1 como também é T2. 

- Um espaço de Alexandroff regular e T0, ele é discreto. E todo espaço regular de Alexandroff é 

normal. E esta propriedade equivale a dizer que neste espaço, para todo fechado P, BP é um fechado. 

- Demonstrou-se a compacidade e sub certas condições descritas, um espaço de Alexandroff é de 

Lindeloff. 

- Finalmente, foram associadas outras propriedades como os axiomas de eumerabilidade e a pseudo-

metrizabilidade nos espaços de Alexandroff.  

Tais propriedades são interessantes na parte aplicacional dos espaços de Alexandroff.  
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